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Abstract

Large Reasoning Models (LRMs) have intro-
duced a new paradigm in Al by enabling mod-
els to “think before responding” via chain-
of-thought reasoning. However, the absence
of open and reproducible recipes for build-
ing reasoning-centric medical LMMs hinders
community-wide research, analysis, and com-
parison. In this paper, we present MEDVL-
THINKER, a suite of simple yet strong base-
lines. Our fully open recipe consists of: (1)
systematic data curation for both text-only
and image-text medical data, filtered accord-
ing to varying levels of reasoning difficulty,
and (2) two training paradigms: Supervised
Fine-Tuning (SFT) on distilled reasoning traces
and Reinforcement Learning with Verifiable
Rewards (RLVR) based on final answer cor-
rectness. Across extensive experiments on the
Qwen2.5-VL model family (3B, 7B) and six
medical QA benchmarks, we find that RLVR
consistently and significantly outperforms SFT.
Additionally, under the RLVR framework, a
key, counter-intuitive finding is that training on
our curated text-only reasoning data provides a
more substantial performance boost than train-
ing on multimodal image-text data. Our best
open 7B model, trained using the RLVR recipe
on text-only data, establishes a new state-of-
the-art on existing public VQA benchmarks,
surpassing all previous open-source medical
LMMs. Furthermore, scaling our model to 32B
achieves performance on par with the propri-
etary GPT-40. We release all curated data, mod-
els, and code to provide the community with a
strong, open foundation for future research in
multimodal medical reasoning.

1 Introduction

The practice of healthcare increasingly involves
processing vast amounts of multimodal medical
data (e.g., text, imaging, lab results). Clini-
cians must integrate information from different
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Figure 1: MEDVLTHINKER provides a simple yet
strong baseline for multimodal medical reasoning. No-
tably, MEDVLTHINKER-32B yields performance on
par with the closed-source GPT-40 model.

sources (clinical notes, radiology images, lab re-
ports) to make diagnoses and treatment decisions.
Large Multimodal Models (LMMs) have recently
emerged as general-purpose foundation models that
can perceive and reason about visual inputs (Li
et al., 2023; Liu et al., 2023b, 2024; Hurst et al.,
2024; Chen et al., 2024b; Xie et al., 2024b). Given
that medical data are natively multimodal (e.g.,
microscopy slides, CT and MRI scans, X-rays),
LMMs have a natural appeal for medical Al and
have begun to be adopted in modality-rich clini-
cal settings with the potential to improve diagno-
sis (Chen et al., 2024b; Li et al., 2023; Liu et al.,
2023a), treatment planning (Zhou et al., 2023), and
patient monitoring (Alshibli et al., 2025).

Parallel to this, Large Reasoning Models (LRMs)
extend large language models with a new response
paradigm: the model “thinks” through a chain-of-
thought before producing a final answer. This al-
lows the model to devote more computation at in-
ference time to reasoning, often improving perfor-
mance on complex tasks (Guo et al., 2025; Guha
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Figure 2: The data filtering and training pipeline. (A) We first filter both text-only m23k dataset and image-text
PMC-VQA dataset, by generating multiple answers per question with Qwen2.5-VL-Instruct. Then we filter those
questions are answered all wrong or almost correct. (B) Based on the filtered two datasets, we conduct supervised
fineunting (SFT), reinforcement learning with verfiable rewaresd (RLVR), and their combination to train a herd of

multimodal medical large reasoning models.

et al., 2025; Jaech et al., 2024). Early medical
adaptations of text-only LRMs have demonstrated
strong performance on medical QA tasks (Huang
et al., 2025; Chen et al., 2024a; Wu et al., 2025;
Jiang et al., 2025; Xie et al., 2024a). The ability
to generate detailed reasoning steps at test time
appears to confer significant gains in accuracy on
challenging questions (Zuo et al., 2025). However,
how to best combine this reasoning paradigm with
multimodal understanding remains underexplored.
While there have been efforts to build medical mul-
timodal reasoning models, they are often limited in
openness—being either entirely closed-source (Su
et al., 2025; Liu et al., 2025), releasing only model
weights without data or training code (Sellergren
et al., 2025), or, if fully open, are confined to nar-
row datasets or specific domains (e.g., CT or MRI
only) (Lai et al., 2025; Pan et al., 2025). As a con-
sequence, the field lacks a comprehensive analysis
of how critical factors such as data modality, cura-
tion pipelines, and training strategies affect model
performance.

In this paper, we provide MEDVLTHINKER, the
very first fully open-source recipe for building and
evaluating generalized Medical Vision-Language
Reasoning Models. Our comprehensive framework
provides a complete workflow, from data curation
and training pipelines to a standardized evaluation
protocol. This enables, for the first time, a fair
and systematic comparison across diverse multi-
modal medical QA benchmarks. Figure 2 provides
an overview of our approach. We first curate two
types of training data: a rext-only QA dataset and
an image-text (multimodal) QA dataset. Using a
general-purpose multimodal LLM (Qwen2.5-VL-
Instruct) (Bai et al., 2025), we probe each ques-
tion with multiple trials to estimate its difficulty.

Specifically, for each question, we generate multi-
ple candidate answers and count how many times
the model answers correctly (the “pass count”).
Questions that are consistently answered correctly
(too easy) or never answered correctly (too hard)
are filtered out, yielding a focused training set
of medium-difficulty questions. We then employ
strong teacher models to generate detailed reason-
ing chains (long chains-of-thought, CoTs) for the
remaining questions. For text-only questions, we
use the DeepSeek (Guo et al., 2025) model (a pow-
erful text-based LRM) as the CoT teacher, and
for image-based questions, we use GPT-40 (Hurst
et al., 2024) (a vision-enabled GPT-4 variant).

Using these data, we train the base multimodal
LLM under two paradigms: (1) Supervised fine-
tuning (SFT) on the teacher-generated CoT traces,
and (2) Reinforcement Learning with Verifiable Re-
wards (RLVR) on the question-answer pairs (with-
out CoTs). SFT directly teaches the model to re-
produce high-quality reasoning and answer traces,
whereas RLVR uses only binary rewards from an-
swer correctness to encourage the model’s own rea-
soning. We implement RLVR via Group Relative
Policy Optimization (GRPO) (Shao et al., 2024),
an efficient policy-gradient algorithm that requires
no value estimator or critic model. In RLVR train-
ing, the model generates multiple reasoning traces
for each question; each trace is verified for correct
answer format and correctness of the final answer,
yielding a +1 or -1 reward. These binary rewards
are normalized (whitened) across the batch and fed
into the GRPO update step, which applies a PPO-
style clipped objective. This process gradually con-
centrates the model’s generation probability mass
on verifiably correct reasoning traces while lim-
iting divergence from the original model output



distribution.

We conduct extensive experiments on six multi-
modal medical QA benchmarks to investigate the
properties of our MEDVLTHINKER. We use the
Qwen2.5-VL series as the base models (in 3B, 7B,
and 32B parameter sizes). Our evaluations cover
both general medical visual QA and modality-
specific QA (covering specialties like pathology,
radiology, etc.). The results reveal several im-
portant—and at times counter-intuitive—findings:
First, regarding training paradigms, models trained
with RLVR consistently outperform those trained
with SFT across both 3B and 7B scales. Second,
in terms of data modality, text-only training out-
performs image-text training. Notably, SFT on
distilled text-only CoT data degrades performance
relative to the base model (e.g., MEDVLTHINKER-
7B accuracy drops from 53.5% to 43.8%), whereas
SFT on image-text data yields performance similar
to the untrained base model. In contrast, RLVR
on text-only data provides the largest performance
boost, improving the 7B model from 53.5% to
54.9%. RLVR on image-text data also improves
performance, but to a lesser extent. Moreover,
combining text-only and image-text data—either
through SFT+RL or sequential RL—does not yield
additional gains beyond using text-only data alone.
Third, model scale has a clear impact: 7B mod-
els consistently outperform their 3B counterparts
across all configurations.

Among existing open-source 7B medical LMMs,
MEDVLTHINKER-7B (trained with RLVR on text-
only data) achieves a new state-of-the-art aver-
age accuracy of 54.9% across six benchmarks.
To evaluate the effect of model scaling, we fur-
ther train a 32B variant. As shown in Fig-
ure 1, MEDVLTHINKER-32B performs compet-
itively with the proprietary GPT-40, demonstrating
the potential of open models to close the perfor-
mance gap with commercial systems. To acceler-
ate community-driven development and foster fu-
ture innovation, we release our complete research
toolkit—including all models, code, and pipelines
for data curation, training, and evaluation.

2 Related Works

2.1 Large Reasoning Models and Medical
Adaptation

Large Reasoning Models (LRMs) endow large lan-
guage models with the ability to articulate step-by-
step reasoning before finalizing an answer (Wei

et al., 2022; Guo et al., 2025; Team et al., 2025;
Jaech et al., 2024). This test-time “think then an-
swer” approach allows extended reasoning and has
yielded impressive gains in domains such as math-
ematical problem (Zeng et al., 2025; Yang et al.,
2025; Muennighoff et al., 2025) solving and code
generation (Jaech et al., 2024; Yang et al., 2024).
One way to train LRMs is via Reinforcement Learn-
ing with Verifiable Rewards (RLVR), which for-
goes supervised chain-of-thought data and instead
uses binary feedback on answer correctness (Chen
et al., 2025; Yu et al., 2025). RLVR eliminates the
need to curate lengthy reasoning exemplars; it di-
rectly incentivizes correct reasoning by rewarding
only the final outcome. In practice, an efficient im-
plementation of RLVR is crucial. Group Relative
Policy Optimization (GRPO) (Shao et al., 2024)
has been adopted for its efficiency, removing the
need for a separate value network (critic) during
RL updates. An alternative approach is to distill the
reasoning traces of stronger models via supervised
fine-tuning (SFT). For example, one can use a GPT-
4 level model to generate high-quality explanations
(CoTs) for medical questions, and then fine-tune a
smaller model on this data (Chen et al., 2024a). Re-
cent work shows that fine-tuning medical-focused
LRMs (either via SFT on expert traces or via RL on
answer rewards) can significantly improve medical
question answering performance (Wu et al., 2025;
Huang et al., 2025; Jiang et al., 2025). Our work
extends these ideas to the multimodal realm, ex-
amining whether similar reasoning enhancements
hold when visual information is involved.

2.2 Multimodal Medical Large Language
Models

Given that clinical data often includes images (radi-
ology (Lau et al., 2018), pathology (Ikezogwo et al.,
2023), etc.), there is growing interest in extending
LLMs to handle visual inputs for medical appli-
cations. Med-Flamingo (Moor et al., 2023) was
among the first to propose an interleaved vision-
language training pipeline for a medical LLM, en-
abling it to handle image-text pairs in a single
prompt. LLaVA-Med (Li et al., 2023) introduced a
two-stage approach: first, connect a vision encoder
with an LLM via a learned projection (connector)
and fine-tune on general images; second, fine-tune
the combined model on medical image—text in-
struction data to specialize it. PMC-VQA (Zhang
et al., 2023) is one such large-scale multimodal
instruction dataset, constructed from PubMed Cen-



tral articles (figures and captions) using GPT-3.5
as an annotator. However, the quality of GPT-3.5-
generated questions and answers in PMC-VQA
is limited by the base model’s capacity, and the
dataset likely contains noise or insufficiently de-
tailed questions. Other contemporaneous efforts
include HuatuoGPT-Vision (Chen et al., 2024b),
which scales up LLaVA-Med’s pipeline by gener-
ating a much larger set of QA pairs from a medi-
cal corpus and training larger models (up to 34B
parameters). There are also modality-specific med-
ical VLMs such as RadFM (Wu et al., 2023) and
SkinGPT (Zhou et al., 2024) that follow similar
pipelines but focus on particular domains (e.g., ra-
diology, dermatology) with domain-specific image-
text data. In summary, several open-source medical
LMMs have been proposed, but integrating an ex-
plicit reasoning mechanism (as in LRMs) into these
models has not been thoroughly studied prior to
our work.

2.3 Concurrent Works

Very recently, a few works have begun exploring
the idea of eliciting medical reasoning in LLMs.
For text-only medical QA, HuatuoGPT-o1 uses a
PPO-based RL approach (Schulman et al., 2017)
with an external reward model to train a med-
ical reasoning LLLM (Chen et al., 2024a), and
MedS3 leverages Process-Reward Models (PRMs)
for RL to improve stepwise reasoning (Jiang et al.,
2025). Another approach, denoted M1 in a recent
preprint, distills the reasoning traces of a GPT-4-
based model (denoted R1) into a smaller model
via SFT (Huang et al., 2025). In the multimodal
domain, MedVLM-R1 (Pan et al., 2025) demon-
strates the effectiveness of RLVR on a small scale
of multimodal data (fewer than 1K training sam-
ples), and Med-R1 (Lai et al., 2025) applies a sim-
ilar RLVR scheme on separate modality-specific
datasets. However, these models are trained on
limited data and are not generalizable across differ-
ent types of medical visual questions. GMAI-VL-
R1 (Su et al., 2025) is a general multimodal medi-
cal LLM trained with an RLVR paradigm, but its
training data and code are not publicly available. In
contrast, our work provides an open-source recipe
for building multimodal medical reasoning models
with both SFT and RL techniques, and we con-
duct a thorough experimental study across varying
model scales (3B, 7B, 32B) and diverse bench-
marks. To our knowledge, this is the first work
to systematically compare supervised CoT distilla-

tion and RLVR for multimodal medical QA, and to
benchmark the resulting models against prior open
medical LMMs and closed models like GPT-4.

3 Methods

We describe our data curation process and training
methodologies for MEDVLTHINKER. Figure 2
illustrates the overall pipeline of data filtering and
model training.

Data Curation and Filtering. We gather two
datasets for training: a text-only medical QA
dataset and a multimodal (image+text) medical QA
dataset. For text-only data, we use the m23k (Huang
et al.,, 2025), which compiles 23,493 multiple-
choice medical questions from the training splits
of MedQA (Jin et al., 2021), MedMCQA (Pal
et al., 2022), and HeadQA (Vilares and Gémez-
Rodriguez, 2019). Each question in m23k is accom-
panied by a set of candidate answers, and we have
access to high-quality reasoning chains (CoTs)
for these questions distilled from the DeepSeek-
R1 (Guo et al., 2025) model. For multimodal data,
we adopt PMC-VQA (Zhang et al., 2023), a large
dataset of 176,948 visual QA pairs derived from
biomedical literature figures and captions (cover-
ing 149k images). PMC-VQA was generated using
GPT-3.5 and covers a broad range of medical top-
ics, making it a general-purpose multimodal medi-
cal QA resource (unlike modality-specific datasets
such as PathVQA (He et al., 2020), SLAKE (Liu
et al., 2021), VQA-Rad (Lau et al., 2018), which
target one type of image).

Not all questions in these datasets are equally
useful for training a reasoning model; some are too
easy (already trivial for the base model) and some
are too hard (unsolvable even with reasoning). Fol-
lowing recent curriculum learning insights (Muen-
nighoff et al., 2025), we perform a difficulty-based
filtering on both datasets. We prompt three vari-
ants of a general multimodal model (Qwen2.5-VL-
Instruct with 3B, 7B, 32B parameters) to answer
each question 16 times (using nucleus sampling
with temperature 1.0). For each question, we record
the pass count, i.e. the number of trials (out of
16) that produced the correct answer. Figure 3
shows the distribution of pass counts on the text-
only m23k and image-based PMC-VQA, for each
model size. As model scale increases, more ques-
tions achieve high pass counts (e.g. the 32B model
answers a larger fraction of questions correctly in
a majority of trials). This indicates that the base
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high pass count questions increased. This indicate the potential of the models, especially for latter RLVR training,
which encourage the models improve this possibility to answer questions correctly. The pass count are used for

latter data filtering.

model’s capability improves with scale, which in
turn means that a sufficiently large model can solve
many of the questions reliably given enough at-
tempts. For the purposes of training data selec-
tion, we focus on medium-difficulty questions that
are neither always solved nor hopelessly unsolved.
Concretely, we use the results of the 3B model to
filter the data: any question with pass count = 0
(all trials wrong) or > 7 (correct in at least 7 out of
16 trials) is removed. This retains questions that a
smaller model finds neither trivial nor impossible,
under the assumption that these medium-difficulty
questions will benefit most from reasoning train-
ing. After filtering, the text-only dataset is reduced
to 16,512 questions and the image-text dataset to
115,456 questions. These filtered datasets are used
for all subsequent training of 3B, 7B, and 32B mod-
els, ensuring a fair comparison across model scales.

3.1 Training Strategies

We train our MEDVLTHINKER models on the fil-
tered data under different strategies, as outlined
above. We perform SFT and RLVR on the text-
only and image-text datasets separately to isolate
the effect of each data modality. In addition, we ex-
periment with two combined strategies: (a) SFT on
text-only data followed by RL on image-text data
(denoted SFT@ + RL@ ), and (b) RL on text-only

data followed by RL on image-text data (RL@ +
RL@ ). Figure 2(B) illustrates the training variants.
Below, we describe the two core training paradigms
in detail:

Supervised Fine-Tuning (SFT). Supervised fine-
tuning forms the foundation of our pipeline. Start-
ing from a general-purpose pretrained multimodal
language model (Qwen2.5-VL), we minimize
the token-level cross-entropy loss on the curated
question-answer pairs (with their reasoning traces).
Using teacher-forced learning on the high-quality
CoT annotations provides a dense supervision
signal, allowing the model to quickly internal-
ize domain-specific medical knowledge, terminol-
ogy, answer formatting, and the nuanced conven-
tions of clinical explanations. For text-only ques-
tions, we use long-form rationales generated by
the DeepSeek-R1 model as targets, and for image-
based questions, we use GPT-40-generated ratio-
nales. This SFT step teaches the model to emulate
the step-by-step reasoning of superior teachers.

Reinforcement Learning with Verifiable Re-
wards (RLVR). After SFT, we further refine the
model using RL on answer correctness as feed-
back. We adopt Group Relative Policy Optimiza-
tion (GRPO), a variant of PPO that operates on
a group of sampled outputs. For each question,



we sample N reasoning trace rollouts from the
model (we use N = 8 in our experiments). A
deterministic verifier then checks each output: if
the answer is given in the expected format (e.g.,
the model produces a chain-of-thought delineated
by special tokens and then a final answer choice)
and the final answer is correct, a reward +1 is as-
signed; otherwise, a reward —1 is assigned. We
normalize (whiten) these binary rewards across
the group of outputs to obtain advantage estimates.
The GRPO algorithm then updates the model pol-
icy using a PPO-style clipped objective, where the
usual learned value function is replaced by group-
based advantage computation. This yields a KL-
regularized, contrastive policy update that steadily
pushes the model to generate more verifiably cor-
rect reasoning traces (i.e. reasoning that leads to
the correct answer) while constraining it to stay
close to the behavior policy (to avoid degeneration).
Importantly, RLVR does not require explicit CoT
annotations, only a reliable way to verify final an-
swer correctness, making it an appealing method to
enhance reasoning using the same data. In our set-
ting, all questions are multiple-choice or otherwise
have objectively correct answers, so the reward
signal is automatically obtained.

4 Experiments

4.1 Implementation Details

We initialize our models from the Qwen2.5-VL
checkpoint. For SFT, we fine-tune the model for
3 epochs with a batch size of 32 and learning rate
1 x 10~%. For RLVR, we train using GRPO for 5
epochs on the text-only data and 1 epoch on the
image-text data, with a learning rate of 1 x 1075,
We set the total batch size to 128 for text-only RL
(sufficient to sample 8 rollouts per question) and
256 for image-text RL (since each sample includes
image features). For experiments where RL is con-
tinued on a second dataset (e.g., applying RL on
PMC-VQA after an SFT on m23k), we reduce the
batch size (to 64) during the second stage to accom-
modate the longer sequence lengths (the combined
image+CoT+answer sequence can reach ~2048 to-
kens). All models are trained on 8 xA100 GPU
machines using mixed precision.

4.2 Evaluation

We evaluate our models on a suite of six mul-
timodal medical QA benchmarks, which can be
divided into two categories: (1) general-domain

medical QA and (2) modality-specific QA. The
general-domain evaluations include the test set of
PMC-VQA (Zhang et al., 2023) (for direct com-
parison, since our models train on a filtered subset
of its training data), the validation set of MMMU-
Health (Yue et al., 2024) (the health and medicine
portion of the MMMU benchmark), and MedXpert-
MM (Zuo et al., 2025), a challenging benchmark
requiring complex reasoning over multimodal in-
puts. The modality-specific evaluations include
PathVQA (He et al., 2020) (pathology images),
SLAKE (Liu et al., 2021) (slit-lamp ophthalmology
images) and VQA-Rad (Lau et al., 2018) (radiol-
ogy X-rays). Together, these six datasets cover a
broad range of medical visual question answering
scenarios, from generic biomedical knowledge to
highly specialized imaging tasks.

For each benchmark, we report the accuracy (%
of questions answered correctly). Model responses
are generated using greedy decoding (temperature
0) to evaluate base capability without sampling
variance. We note that even with deterministic
decoding, slight nondeterminism in the inference
engine (due to floating-point precision) can cause
minimal variability; thus, we run each evaluation 3
times and report the average accuracy (the standard
deviation was below 0.1 and is provided in the
appendix for completeness). In the result tables,
we use the notation @ to indicate models trained on
the text-only (m23k) data and @ for models trained
on the image-text (PMC-VQA) data. For example,
“SFT@  denotes a model fine-tuned on text-only
CoT data, and “RL@ +RL@ ” denotes a model first
trained with RL on text-only data then further with
RL on image-text data.

4.3 Results

Impact of Training Paradigm (SFT vs. RLVR).
Table 1 summarizes the performance of the
Qwen2.5-VL 3B and 7B models under various
training recipes. We observe that RLVR-trained
models consistently outperform SFT-trained mod-
els of the same size across all benchmarks. For
the 3B base, RLVR on text-only data (RL@ )
achieves 53.19% average accuracy, versus 32.80%
for SFT on text-only (SFT@ ) (a dramatic drop be-
low the 49.14% base performance). Similarly, the
7B RL@ model reaches 54.88% average, compared
to 43.83% for SFT@ (again, SFT underperforms
even the 53.50% base model). These results con-
firm that simply fine-tuning on distilled CoT data
does not guarantee better performance — in fact, it



Table 1: Performance on multimodal medical benchmarks for our baselines. We use greedy decoding to evaluate the
ability of the models. @ means text-only data; @ means image-text data.

Model | PMC MMMU MedX-M | PathVQA SLAKE VQA-Rad | Avg.
Qwen2.5-VL-3B-Instruct 4477  44.12 20.69 61.96 61.30 62.01 49.14
SFT(@ m23k) 28.53  32.55 16.00 42.74 4391 33.09 32.80
SFT(@ PMC) 5455 47.84 21.46 52.76 65.79 58.58 50.16
SFT(@ m23k)+RL(@ PMC) | 46.32 4431 20.52 43.85 58.49 50.98 44.08
RL(@ m23k) 4732 | 52.16 22.90 62.28 63.38 71.08 53.19
RL(@ PMC) 5422  48.43 21.51 51.61 75.56 62.38 52.28
RL(@ m23k)+RL(@PMC) | 51.33 4843 22.60 49.71 66.11 60.17 49.72
Qwen2.5-VL-7B-Instruct 49.30 5294 18.89 65.39 65.71 68.75 53.50
SFT(@ m23k) 3458  46.86 16.40 56.35 54.97 53.80 | 43.83
SFT(@ PMC) 5467 49.80 21.39 53.02 67.71 57.72 50.72
SFT(@ m23k)+RL(@ PMC) | 43.18 47.84 21.84 51.43 60.34 55.15 46.63
RL(@ m23k) 50.67 | 56.86 24.43 66.83 65.79 64.71 54.88
RL(@ PMC) 55.38 5529 24.11 57.09 66.59 63.48 53.66
RL(@ m23k)+RL(@ PMC) | 56.37 50.98 25.80 48.24 59.13 58.09 49.77

may overload the model with long, possibly mis-
matched rationales that hurt its effectiveness on
multimodal QA. In contrast, RLVR directly opti-
mizes the model’s own reasoning policy and proves
markedly more effective at improving accuracy.

Impact of Training Data (Text-only vs. Image-
text). The choice of training data modality also
has a significant effect. From Table 1, training on
the text-only data tends to yield better results than
training on the image-text data. For instance, the
7B RL@ (54.88% avg) outperforms RL@ (53.66%
avg). However, SFT on the text-only CoT data
consistently harms performs relative to the base
model (43.83% for 7B SFT@ ), whereas SFT on
the multimodal data yields a slight improvement
over base on some benchmarks (e.g., +1-2% on
PathVQA, SLAKE) but overall comparable aver-
age (50.72% SFT@ vs 53.50% base). We hypoth-
esize that the long, text-only rationales distilled
from a text-based LRM (DeepSeek) may not align
well with the needs of a multimodal model that
also has to interpret images. The image-based data,
while noisy, at least engages the model’s visual pro-
cessing during training, which might explain why
SFT@ does not drastically degrade performance.
Nonetheless, the strongest gains come from RLVR
on text-only data, which boosts performance sub-
stantially (e.g., +4.05% for 3B, +1.38% for 7B,
compared to base). RLVR on the multimodal data
also improves over base, but to a lesser degree.
These results highlight that in RLVR, high-quality
textual QA data (with verifiable answers) can be

more valuable than larger but noisier image-based
data for training the reasoning capability of mul-
timodal models. Improving the quality of multi-
modal training data remains an important challenge
(see Discussion).

Combined Training Strategies. We also evalu-
ated whether combining text-only and image-text
training yields further benefits. Two combinations
were tried: SFT on text then RL on images (SFT@
+RL@ ), and RL on text then RL on images (RL@
+RL@ ). As Table 1 shows, neither strategy pro-
vided gains over the single-modality RL training.
In fact, for the 7B model, SFT@ +RL@ (53.07%
avg) was worse than RL@ alone (53.66%), and
RL@ +RL@ (49.77%) fell behind RL@ (54.88%).
For the 3B model, similar results are observed. It
appears that after a model has been optimized on
the text-only data, adding the image-text data (even
via RL) can hinder the reasoning capability, result-
ing in a net drop in performance. We conclude that
the best recipe in our study is to apply RLVR di-
rectly on a high-quality text-only reasoning dataset.
This produces the top results for both 3B and 7B.
In most cases, adding an SFT stage or an extra RL
stage on image data does not help, and in the worst
case, it reduces accuracy.

Effect of Model Scale. Increasing the model size
clearly improves performance across the board.
The 7B models outperform the 3B models in ev-
ery corresponding setting (comparing rows in Ta-
ble 1). For example, the base 7B is 4.36% higher



Table 2: Performance on multimodal medical benchmarks with other methods. We use greedy decoding to evaluate

the ability of the models. @ means text-only data. “OW”: Open Weight; “OR”: Open Recipe.

Model | OW | OR | PMC MMMU MedX-M | PathVQA SLAKE VQA-Rad | Avg.
General LMM
GPT-40-mini X | X |519 6353 28.55 63.33 75.24 6691 | 58.24
GPT-40 X | X |5855 6882 35.95 7243 76.44 7022 | 63.74
Gemme 3 4B vV | X | 4442 4667 21.89 59.24 66.59 56.86 | 49.28
Gemme 3 27B vV | X 505 6078 30.80 65.70 72.60 6520 | 57.86
Qwen2.5-VL-3B-Instruct V| X | 4477 4412 20.69 61.96 61.30 62.01 | 49.14
Qwen2.5-VL-7B-Instruct v | X 4930 5294 18.89 65.39 65.71 68.75 | 53.50
Qwen?2.5-VL-32B-Instruct vV | X 5328 6392 27.68 67.98 73.24 75.12 | 60.20
Medical LMM
MedGemma 4B vV | X | 4273 3255 8.17 59.64 83.49 7855 | 50.86
MedGemma 27B v | X 3675 3588 12.13 62.09 77.40 72,67 | 49.49
Llava Med v1.5 Mistral 7B vV |V | 3428 3137 22.56 56.52 62.82 56.74 | 44.05
HuatuoGPT-Vision-7B vV | vV 5339 5059 22.00 63.53 75.00 63.60 | 54.69
HuatuoGPT-Vision-34B vV |V | 5254 5706 21.80 66.72 78.85 7426 | 58.54
MEDVLTHINKER-3B RL@m23k) | v/ | v/ | 4732 5216 22.90 62.28 63.38 71.08 | 53.19
MEDVLTHINKER-7B RL@m23k) | v/ | v/ | 50.67 56.86 24.43 66.83 65.79 64.71 | 54.88
MEDVLTHINKER-32B RL@m23k) | v/ | v/ | 5437  70.00 34.60 68.82 73.96 76.96 | 63.12

on average than base 3B; the RL@ 7B is +1.69%
higher than its counterpart 3B; and SFT@ 7B is
+0.56% higher than SFT@ 3B. On certain bench-
marks like MedXpert-MM (which is especially
challenging and requires complex reasoning), the
gap is more pronounced: the best 7B (RL@ ) at-
tains 24.43% versus 22.90% for the best 3B, and
7B SFT@ achieves 16.40% vs 16.00% for 3B (both
quite low). This trend suggests that larger models
have more capacity to learn medical knowledge
and to benefit from the reasoning training. Pushing
to even larger scales may continue to yield gains
(we test a 32B model below).

Comparison to Previous Models. In Table 2,
we compare our MEDVLTHINKER models against
prior open-source medical VLMs and against GPT-
4-based models. Our 7B RLVR-trained model
achieves an average score of 54.88%, which
is 3—4% higher than the reported performance
of HuatuoGPT-Vision-7B-Qwen2.5 (48.60% avg)
and also above LLaVA-Med v1.5 (Mistral-7B)
(whose exact scores are not available, marked
“?” in the table). On general-domain bench-
marks like MedXpert-MM, our advantage is even
larger: MEDVLTHINKER-7B scores 24.43% vs
HuatuoGPT-Vision’s 22.00%. This demonstrates
the benefit of our focused reasoning training.
HuatuoGPT-Vision was primarily trained with in-
struction tuning on multimodal data (and a bit of

RLHF), and it underperforms on challenging rea-
soning questions. We also note that HuatuoGPT-
Vision reportedly suffered a large performance
drop on generic medical QA after its multimodal
fine-tuning (similar to our observation that SFT
on image data can hurt general QA). In con-
trast, our RLVR approach improved performance
without such trade-offs. Finally, our MEDVL-
THINKER-32B (RL on text-only) reaches 63.12%
average accuracy, surpassing the GPT-4o-mini
model (58.24%) and essentially matching the full
GPT-40 (63.74%) on these benchmarks. This is a
notable result: it suggests that with sufficient model
size and proper training, open models can approach
the performance of proprietary models like GPT-4
on specialized tasks. We emphasize that our entire
training pipeline, data, and models are open-source,
providing a foundation for the community to build
upon.

Qualitative Results. We provide a few anecdo-
tal examples of our model’s outputs in Figure 4
(case study) to illustrate the difference in reasoning
quality before and after RLVR training.

5 Conclusion

In this work, we presented MEDVLTHINKER, a set
of baseline multimodal medical reasoning models
built by combining large vision-language models
with advanced reasoning training paradigms. We



carried out a systematic study of supervised CoT
fine-tuning versus reinforcement learning (GRPO-
based RLVR) for teaching a multimodal model to
reason about medical questions. Our experiments
show that RLVR is markedly more effective than
CoT fine-tuning in improving model performance,
especially when using high-quality text-only medi-
cal QA data. We also found that models trained on
text-only data generalize better than those trained
on image-text data, highlighting a data quality issue
in current multimodal corpora. By training models
at multiple scales, we demonstrated a clear bene-
fit to larger model size: our 7B MEDVLTHINKER
achieves state-of-the-art results among open mod-
els on six benchmarks, and a 32B variant reaches
parity with a GPT-4-based competitor. Our work
provides not only strong baseline models for the
community but also insights into training strategies
for multimodal reasoning. In future work, we plan
to address the limitations identified (data quality,
curriculum, broader tasks) and hope that MEDVL-
THINKER will inspire further research in reliable
and transparent medical Al

Limitations

While MEDVLTHINKER aims to advance the state
of multimodal medical QA, there are several lim-
itations to acknowledge. First, the quality of the
image-text training data (PMC-VQA) is a concern.
Because this dataset was synthetically generated by
MLLMs, it likely contains noise and biases, which
in turn limited the gains from training on it. Future
improvements will require either cleaning this data
or obtaining higher-quality human-curated multi-
modal data. Second, our difficulty-based filtering
strategy was static and based on the 3B model’s
performance. This may not have been optimal
for the larger models; a more dynamic or model-
specific curriculum could yield better results. Third,
our RLVR training was relatively short and task-
specific, leveraging only QA-format rewards. As
a result, the models are specialized to the QA task
format and may not generalize to other interactions
(e.g., multi-turn conversations or explanatory re-
sponses) without additional fine-tuning. Finally,
although we tested a 32B model, even larger mod-
els or more diverse pretraining might be needed
to capture the full complexity of real-world med-
ical reasoning. We release our models and code
in hopes that the community can build on them to
address these limitations.
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P
i \ Dataset: PMC VQA
’ /v
0 ; 00 Question: What did the imaging reveal about the patient's pericardial fluid?
R A
y AL 4 Options: A. Very little; B. A moderate amount; C. A massive amount; D. None

<think> To determine the amount of pericardial fluid in the patient, let's analyze the provided images: 1. Chest X-ray (Left
Image): The chest X-ray shows a widened mediastinum, which can be indicative of pericardial effusion. However, the X-ray
alone is not definitive for quantifying the amount of fluid. 2. CT Scan (Right Image): The CT scan provides a more detailed view
of the pericardial space. The image shows a significant amount of fluid surrounding the heart, which is consistent with a
pericardial effusion. The fluid appears to be extensive, filling the pericardial space and compressing the heart, which is
characteristic of a massive pericardial effusion. Given the visual evidence from both the chest X-ray and the CT scan, the
pericardial fluid appears to be extensive and significant. </think> <answer>C. A massive amount</answer>

Dataset: MedXpertQA-MM

Question: You are shown images of the right and left distal common
carotid arteries, respectively. Which of the following is the MOST
likely diagnosis?

Options: A. Intra-aortic balloon pump; B. Carotid artery dissection; C.
Mitral insufficiency; D. Subclavian steal; E. Aortic insufficiency

<think> To determine the most likely diagnosis, let's analyze the provided images and the options: 1. Images Analysis: The left
image shows the right distal common carotid artery (CCA) with a velocity of 98.0 cm/s in the proximal segment (PS) and 0.0
cm/s in the distal segment (ED). This suggests a significant reduction or absence of flow in the distal segment. The right image
shows the left distal common carotid artery (CCA) with a velocity of 149.1 cm/s in the proximal segment (PS) and 0.0 cm/s in the
distal segment (ED). This also indicates a significant reduction or absence of flow in the distal segment. 2. Key Observations:
The absence of flow in the distal segments of both carotid arteries is a critical finding. The presence of a "reversed" flow pattern
in the distal segments (indicated by the color inversion in the images) suggests retrograde flow, which is often associated with
conditions that cause a pressure gradient or flow reversal. 3. Diagnosis Consideration: This condition causes a diastolic runoff
of blood from the aorta back into the left ventricle, leading to a characteristic diastolic flow reversal in the carotid arteries. The
images show a significant reduction or absence of flow in the distal segments, which is consistent with aortic insufficiency. 4.
Conclusion: The most likely diagnosis is Aortic insufficiency because it explains the flow reversal and the significant
reduction in flow in the distal segments of both carotid arteries. </think> <answer>E. Aortic insufficiency</answer>

Dataset: PathVQA
Question: Does this image show burkits lymphoma?

Options: A. Intra-aortic balloon pump; B. Carotid artery dissection;
C. Mitral insufficiency; D. Subclavian steal; E. Aortic insufficiency

<think> To determine whether the image shows Burkitt's lymphoma, let's analyze the key features: 1. Histological Appearance:
Burkitt's lymphoma is characterized by a highly mitotic, starry-sky appearance. This is due to the presence of numerous mitotic
figures and scattered macrophages (often referred to as "starry sky" because of the scattered appearance of these cells). 2.
Starry-Sky Pattern: In Burkitt's lymphoma, the lymphoma cells are small to medium-sized, with a high nuclear-to-cytoplasmic
ratio, and are often arranged in a diffuse pattern. The presence of tingible body macrophages, which are macrophages that
engulf apoptotic bodies, is a hallmark feature that gives the "starry-sky" appearance. 3. Image Analysis: The provided image
shows a diffuse population of cells with a high mitotic rate. There are scattered cells with a more prominent appearance, which
could be tingible body macrophages. The overall pattern is consistent with the "starry-sky" appearance typical of Burkitt's
lymphoma. 4. Conclusion: Based on the histological features observed in the image, it is consistent with the appearance of
Burkitt's lymphoma. </think> <answer>A. Yes</answer>

Dataset: VQA RAD
Question: Is the lesion wedge-shaped?

Options: A. Yes; B. No

<think> To determine if the lesion is wedge-shaped, let's analyze the image: 1. Image Description: The image appears to be an
MRI scan of the brain, showing a cross-sectional view. The structure of the brain is visible, with the white matter and gray matter
distinguishable. 2. Lesion Identification: The lesion in question is the area that appears darker or lighter compared to the
surrounding tissue. In this image, there is a noticeable dark area in the center, which could be the lesion. 3. Shape Analysis: A
wedge-shaped lesion typically has a triangular or fan-like appearance, extending from the surface of the brain inward. In this
image, the dark area in the center appears to have a triangular shape, extending from the outer edge toward the center of the
brain. 4. Conclusion: Based on the visual inspection, the lesion does appear to have a wedge-like shape, consistent with the
description of a wedge-shaped lesion. </think> <answer>A. Yes</answer>

Figure 4: Case study on multiple medical VQA benchmarks. Out MEDVLTHINKER demonstrates robust reasoning
capability across various imaging modalities.



A Discussions

Quality of Training Data. One striking observa-
tion is the performance gap between models trained
on text-only data versus image-text data. In our
experiments, models trained purely on the PMC-
VQA image-text corpus often lost exhibit capabil-
ity relative to their starting point (especially for
general QA tasks), whereas models trained on the
m23k text-only corpus made clear gains. We sus-
pect the primary cause is the quality of the training
data. The PMC-VQA dataset was generated au-
tomatically by GPT-3.5 from journal figures and
captions. Many of the questions may be simplis-
tic or flawed, and the answers might not always
require deep reasoning (or could even be incorrect
in some cases). In contrast, the text-only m23k
dataset is derived from human-authored exam ques-
tions and has higher factual and linguistic qual-
ity, supplemented by expert-generated reasoning
chains. Unfortunately, besides PMC-VQA, other
“general” multimodal medical QA datasets com-
piled from various sources (e.g., OmniMedQA (Hu
et al., 2024), GMAI-Bench (Ye et al., 2024)) cur-
rently do not contain training splits and thus are
not directly usable for model training. This high-
lights the need for better multimodal medical QA
data. An encouraging direction is the emergence of
high-quality, human-curated medical image report
datasets (radiology reports, pathology reports, etc.),
which could be leveraged to generate more realistic
multimodal QA pairs|[TODO]. In future work, we
plan to incorporate such sources to improve the
image-text training signal.

Difficulty-Based Filtering. In applying RLVR, it
is important to present the model with training ex-
amples of appropriate difficulty. We performed
a simple filtering by removing questions that a
smaller model got either 0/16 or >7/16 correct.
This “one-size-fits-all” filter was then applied uni-
formly for training all model sizes. In reality, dif-
ferent model scales have different ability levels,
and an optimal curriculum might adjust the filter-
ing threshold per model (a form of capacity-aware
data selection). More adaptive curriculum learning
strategies (e.g., DynaBoost[TODO], AdaCurricu-
lum[TODOY]) could further improve RLVR training
by continuously calibrating question difficulty to
the model’s growing competence. We leave a full
exploration of curriculum learning for medical rea-
soning to future work.

Effectiveness of RLVR in the Medical Domain.
Our results validate that RLVR is a powerful ap-
proach for improving reasoning in medical QA,
consistent with findings in other domains. With
only a few epochs of RL (a relatively small com-
pute budget compared to pretraining), we observed
significant gains in the model’s ability to arrive at
correct answers. This improvement can be inter-
preted as an increase in sampling efficiency: after
RLVR, the model is far more likely to produce a
correct answer in a single try, whereas the base
model might need multiple attempts (as illustrated
by Figure 3). Of course, RLVR is not a magic bul-
let; its success still depends on the diversity and
difficulty of the training questions and the relia-
bility of the reward signal. In our case, we used
exact-match answer checking, which is straight-
forward for multiple-choice questions. Extending
RLVR to open-ended generation or multi-step clin-
ical reasoning (where reward shaping is harder) is
an interesting challenge. We believe scaling up the
RLVR approach, with larger verification datasets
and more compute, could yield even stronger med-
ical reasoners. This work provides a first step in
that direction using openly available tools.

Task Scope and Future Work. So far, we
have limited training and evaluation to single-turn
question-answering tasks. However, real-world
medical scenarios often involve more interactive
and diverse tasks: multi-turn dialogues with pa-
tients, grounding textual descriptions in images
(e.g., locating findings in an image), and reasoning
about temporal sequences of images or data. Our
current Med-VLRM could potentially be adapted
to some of these tasks, but we have not specifically
trained or tested it on them. In the future, we aim to
extend our framework beyond QA format, incorpo-
rating vision-language grounding tasks, dialogue
agents for patient interaction, and other medically
relevant capabilities. We are hopeful that the com-
bination of explicit reasoning and multimodal un-
derstanding, as demonstrated in Med-VLRM, can
serve as a foundation for more advanced clinical
Al systems.
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